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On the Lattice Stability of Metals 
II. Two Perturbation Formalisms for the Comparison of Crystals 
with Different Lattices 

Bernhard Reiser 
Max-Planck-Institut fiir FestkiSrperfor schung, Btisnauer Str. 171, 
D-7000 Stuttgart 80, Federal Republic of Germany 

The symmetry differences between different lattices is a main obstacle for pertur- 
bation theory. Two approaches are presented to circumvent this difficulty. The 
first shows how to introduce a new potential with the symmetry of the first lattice 
which has, for a certain number of eigenstates, the same energy and potential energy 
values as another potential for the second lattice. First-order perturbation theory 
may be used to discuss the influence of potential differences between two lattices 
on the band structure energy differences between these two lattices. The second 
shows how to transform the potential difference into one of the kinetic part of 
the Hamiltonian. This is achieved by a non-linear rearrangement operator. For the 
model of a muffin-tin potential with delta functions as atomic potentials this 
operator reduces to a transformation matrix. With this model the dependence of 
the lattice stability on the geometry of the lattices may be investigated. 
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1. Introduction 

The band structure energy is determined as the sum of the energies of  the electronic 
states corrected by the double counted electron-electron interaction energy [1 ]. If we 
compare the energy of those lattices which have comparable symmetry the difference 
in the total energy may be determined by the difference in the band structure energy. 
This is a well-known fact for metals [1-4]. So we may be interested in the possibility 
of comparing the band structure energies of different lattices. For simplicity we only 
discuss the cases of elements and primitive lattices. We assume that the correct energy 
and potential energy values of the realistic many-particle problem are presented by an 
approximately chosen one-particle potential Ve(r) which satisfies the SchrSdinger 
equation, 

H e - - A  + VC(r), C - A ,  B 

A and B characterize the two lattices to be compared. In this treatment we will neglect 
the double counting correction of the electronic interaction because it is the same for the 
potential energy as for the energy, and the electron-electron interaction is rather structure 
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independent [1, 3, 4]. Thus we have the following criterion for the lattice stability: 

=- 2 (4 - d) 

From this relation we will commence our consideration. In Sects. 2 and 3 we give the 
perturbation of the potential and the kinetic part of the Hamiltonian respectively. In 
Sect. 4 we discuss some further aspects of the problems involved in this work. 

2. The Perturbation Treatment of the Potential 

We imagine that ~ normalized and orthogonal functions ~nA'(r) belonging to the lattice 
A are determined by 

A '  A '  (r ltPn )=-~mn 

n runs through the h lowest energy states belonging to en B. In practice this is possible 
because in an Ansatz, as for example 

m = l  

we have many more coefficients Cnm than equations to be satisfied. The number of 
equations is 

~+ +~- =~( f i  +3) 

and we may choose the remaining coefficients arbitrarily. This arbitrariness does not 
alter our result because the energy and potential energy values will not be changed. Now 
we imagine that we extend the set of h functions and create a complete set of orthogonal 
and normalized functions of the symmetry of lattice A. 

We determine a Hamiltonian H A' and a potential VA'(r) with the spectral representation: 

:,4' H --ZI~.A'> B A' e. ( ~ .  I 
n 

v A'(~) = H A' + 

V A'(r) given in this way is non-local. It may be determined to be local by an Ansatz 

VoA'(r) - 2 ~r VA'(r) = Y Vg"(~--i A) 
l i A 

with any set of localized functions gt(r).i A are the lattice vectors of lattice A. 

What we have gained now is a potential V A'(r) which has the property of giving the 
same energy (en B) and potential energy (V B) for the n lowest energy states as the 
potential VB(r) of the lattice B. This means that we have transferred the potential 
vB(t) from the lattice B to the lattice A. Instead of comparing VB(r) with VA(r) 
we can compare vA'(r) with vA(r). 
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We are now able to carry out a perturbation calculation of the energies en B starting from 
the energies e 2 . The perturbation potential is VA'(r) - VA(~). This is hardly possible 
for VB(r) - VA(r) because the symmetry of A and B is different. We illustrate this 
using the Bloch form of the eigenfunctions [5, 6] 

= u (r) 

(--A + f~O + V C ( r ) ) u ~ ( r )  = (eCn - ~2)UCn(r) 

u~(r) and VC(r) are in the same function space. However, the function space for 
C = A is different from that for C = B because the reciprocal lattices are different. It is 
impossible to develop un B by the set of the functions u~ which would be necessary for 
perturbation theory. A perturbation development of @n B by the @2 would connect 
eigenstates of different ~ which would increase the number of involved states drastically. 
Being more so the stronger the potential. 

We do not have to worry about perturbation theory with degeneracies because the 
symmetry between A andA' remains the same. But it may happen that B has large 
energy differences where A has vanishing differences caused by degeneracy. Therefore 
we may assume that the symmetry properties of the lattices are removed by an infini- 
tesimal distortion. If it was not possible to rearrange the states of lattice B by inter- 
changing the states of the inner part with those of the surface of the Brillouin zone 
the density of states would differ so strongly that a perturbation calculation would not 
be possible. But this is not the case for similar structures, as we may see for example in 
the case of the metals. The energy differences between states of bcc and fcc for lithium 
are smaller than about 0.01 ryd [7] and for the transition metals about 0.02 ryd [4]. 
The differences for the lowest valence states are 10 -3 ryd (Pl) for lithium [7], and for 
the d-bands of transition metals it may be taken to be zero, as shown by Pettifor [4]. 

We consider the perturbation of first order: 

AEBA(1)  = 2 (@2 [ vA'(r) -- vA(r)[ @n A) ~ 2 (@2'1 vA'(r) -- vA(r)[ @A') 
n 

/-z 

This holds because in first order the energy can be described with @2 and @2' and 
expresses the difference in energy and potential energy by the difference of the poten- 
tials if the first-order perturbation theory is applicable. For example, using the above 
relations, potential differences caused by structure differences can be discussed in the 
following manner: We may imagine that the regions of deep and,high potential are trans- 
ferred point by point from lattice B to lattice A - producing V A (r) - and are then 
compared with V A (r). Thus this is nothing but a comparison of Ve(r) with VA(r) 
without the mathematical difficulties caused by the different lattice symmetries. 

Perturbation of first order agrees with the virial theorem [6] to within a factor of 0.5. 
That first-order perturbation theory may be sufficient is seen, for example, in the case 
of metals where the energy differences are very small as has been already mentioned. 
The ratio of band structure energy difference to the band structure energy of one lattice 
is for metals in the range of about 10 -z to 10 .4 [2, 4]. Even the shift in the energy of 
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a single state should be not larger than about 0.02 ryd, as may be seen from the density 
of states distribution shown by Pettifor [4]. This value has to be compared with about 
0.5 ryd which is about the centre of the d-band. Their ratio is 0.04 and even if it were 
not so small, we might expect that the sign of the band structure energy difference, the 
trend of the lattice stability, is given correctly. 

The advantage of our treatment is that we can reveal the connection between differences 
of the lattice potentials and the lattice stability by expressions involving low-order per- 
turbation theory. This is hardly possible in a secular procedure. The disadvantage is that 
we have to determine the potential V A'(r) by the aid of energy values and potential 
energies of lattice B. Therefore it would be very interesting to investigate the possibility 
of determining VA'(r) entirely in terms of the potential vB(r). 

The simplest possibility might be the following: We divide the Wigner-Seitz cells of 
both lattices into spherical shells having their centres at the atom in the middle of the 
unit cell. We number the shells with increasing distance from the centre, there being an 
equal number of shells. The shells of the two lattices with the same number shall have 
the same volume. If the shells are cut by the surface of the cell, the remaining sections 
within the cell shall also have the same volume as the section or the shells with the 
samenumbers in the cell of the other lattice. 

We now calculate the mean value of the potential VB(r) 

f 
Sm 

within the shell S m with the number m. We take this value as the mean value of the 
shell Sm of the potential VA'(r). 

3. Perturbation of the Kinetic Energy 

It may happen that the potentials VA(r) and VB(r) differ only in their geometrical 
arrangement. For example, this is the case for two muffin-tin potentials with the same 
muffin-tin plane and the same potential within the spheres which differ only in the 
arrangement of the potential spheres. In such a case we define a reordering operator 
R BA so that 

VB(rB) -- vA(r A) 

~gB ~ RBA .rA 

If we insert these relations in the Schr6dinger equation for the potential V B (w B) 

[-~,. + v % ' ) ]  ~.~(r 8) = ~.B ~ ( r ' )  

we get 

[-~R,- + v~(R~ A)] ~ ( R r  A):  e~ r R --R "A 

[ -A~.  + VA(r A) + K , . ]  eA'(rA) = enB~OnA'(r A) 

K~ A - A~A -- A R ~  
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In spite of being generated by the Laplacian, K~ ~ can be handled in a perturbation 
treatment as any perturbation of a potential. It generates the energies e ff belonging to 
the lattice potential VB(t ) .  

There is no doubt that R BA can be calculated by introducing an Ansatz 

r B = iw/~ 1) + iW/~ 2) + ~W/~ 3) 

l,m,n C~mnXAYAZA' r A =iXA + iYA + ~ZA 

in the defining equation for R BA above and determining the coefficients elm n.'u In 
general this makes R BA non-linear. 

The deformation of the spherical atomic potentials can be avoided if the Ansatz for 
R BA transforms the potential shell by shell as was described at the end of the last 
section. That K~A can really be a weak perturbation is seen by comparing empty 
lattices. 

However, there is one case for which R BA becomes linear. If the plane of a muffin-tin 
potential is lattice independent and the atomic potentials reduce to delta functions, R BA 
is determined simply by 

i B - -RBAiA 

Here R BA is a simple matrix with constant elements 

R BA =(ruv); 1 < # , v < ~ 3  

We will now obtain an expficit expression for Kr .  for this case. With the definition 

[ r#l~ 

\ ru  a~ 
1~<#~<3 

we may write 

- w A  

3 
= = E 2 

# = 1  

For bcc and fcc we have 

= - -  1 ; 
2 0 

For example, for the vector 

B = f c c  

A =- bcc 
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we get 

if r =RBAibcc =a0bCc =ag 

a bcc and a fcc are the half-lattice constants of bcc and fcc respectively. The actual calcu- 
lation can be carded out with the wave functions generated for lattice A using a three- 
dimensional de Kronig-Penny [8] like model. 

4. Conclusion 

Two possibilities are presented for handling the problem of comparing different structures 
Both can be generalized to non-primitive lattices and compounds. For example it would 
be very interesting to do explicit calculations for similar lattices such as Zink blende and 
Wurtzit. A further example would be the treatment of the metallic bond by localized 
orbitals as in a tight-binding treatment [7] and by perturbation theory. 

Not only may VB(r) be generated from VoA(r) but also the eigenfunctions of lattice 
B from that of lattice A, at least approximately. As is shown in [7] the tight-binding 
orbitals ~vt of a state 

1 

are almost lattice independent. So it should be possible to approximately calculate 
energy values e B using only functions and a potential generated from those of lattice 
A. 

Our rearrangement operator R BA has a corresponding operator PR for the potential 
VB(r). From 

V B ( R r )  = vA(r); R -- R s'4 

it follows 

eRvn(r) = v A ( r )  

Here PR connects the functions V n (r) and vn(~) of the total symmetric representa- 
tion of two space groups. In general there are P operators which connect the functions 
belonging to different representations of different groups. It would be a further interest- 
ing problem to investigate the connections arising in this way between different groups. 
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